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Abstract
Extensive bulk magnetization and ac susceptibility measurements have been
performed over a wide temperature range on well characterized polycrystalline
Ni75Al25 samples ‘prepared’ in different states of site disorder. A detailed
data analysis unambiguously establishes (i) the existence of multiplicative
logarithmic corrections to the mean-field (MF) power laws in the asymptotic
critical region near the ferromagnetic–paramagnetic phase transition and (ii) a
gradual crossover to the Gaussian fixed point at temperatures outside the
critical regime, irrespective of the degree of site disorder present. The latter
crossover is followed by yet another crossover from Gaussian to pure MF
regime in all the samples. Accurate determination of the universal amplitude
ratio Rχ = DBδ−1�, the asymptotic critical exponents β, γ and δ and the
logarithmic correction exponents x−, x+ and x0 for spontaneous magnetization,
initial susceptibility and the magnetization versus field isotherm at the Curie
temperature TC , coupled with the observations made on the same system
previously, not only rules out completely the possibility of isotropic short-
range Heisenberg or isotropic long-range dipolar or uniaxial dipolar asymptotic
critical behaviour in Ni75Al25 but also indicates strongly that, in the asymptotic
critical region, the weak itinerant-electron ferromagnet Ni75Al25 behaves as an
isotropic d = 3, n = 3 ferromagnet in which the attractive interactions between
magnetic moments decay with intermoment distance (r) as J (r) ∼ 1/r(3/2)d ,
and that site disorder is irrelevant in the renormalization group sense.

1. Introduction

In insulating magnetic systems with spins localized at the lattice sites and interacting
with one another through short-range (Heisenberg) exchange interactions, critical behaviour
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is solely governed by the space (lattice) dimensionality d and order parameter (spin)
dimensionality n. By contrast, in metallic magnets, the type and range of interactions coupling
the ‘atomic’ magnetic moments essentially determine their properties in the critical region.
Renormalization group (RG) calculations [1] on a homogeneous isotropic d-dimensional spin
system with n-component order parameter and long-range attractive interactions between spins
decaying with interspin distance, r , as J (r) ∼ r−(d+σ) predict

(i) mean-field (MF) (Gaussian) critical behaviour for all n when σ < d/2,
(ii) MF critical behaviour with logarithmic corrections when σ = d/2,

(iii) a new fixed point, which is characterized by critical exponents that depend on σ , when
(d/2) < σ < 2, and

(iv) short-range critical behaviour (i.e. the universality class primarily decided by the values
of d and n) for all d when σ > 2.

While experiments on crystalline itinerant-electron ferromagnets Fe and Ni [2, 3] as well
as Fe- and Co-based metallic glasses [4–7] have respectively confirmed predictions (iii)
and (iv), there are strong indications that the perfectly ordered intermetallic compound Ni3Al (a
weak itinerant-electron ferromagnet) may be an experimental realization [8] of the theoretical
result (iii). Thus, a study of critical phenomena in band magnets provides a powerful tool to
probe the nature of interactions coupling the magnetic moments in such systems.

Heuristic arguments due to Harris [9] and RG calculations [10–12], based on the random-
exchange Heisenberg (short-range) model (which includes both quenched random site- and
bond-diluted Heisenberg models), assert that the addition of short-range frozen (quenched)
disorder to a pure (ordered) spin system, which undergoes a second-order phase transition
at a temperature TC (Curie point), does not affect the sharpness and other critical properties
of the transition if the specific heat critical exponent of the pure system, αp, is negative
(this result is better known as the Harris criterion). The Harris criterion is vindicated by the
results of critical phenomenon investigations on a number of spin systems with quenched
disorder [4–7, 13–16]. The influence of random disorder, which is invariably present in any
real metallic alloy system, on the critical behaviour near the ferromagnetic–paramagnetic
phase transition in band magnets with long-range interactions has not yet been theoretically
addressed. Even from the experimental point of view, no consensus exists about the role of
atomic (site or bond) disorder in affecting the critical behaviour of metallic ferromagnets.
Conflicting reports [17–22] on the dependence of the critical exponents on the degree of
disorder present in a given weak itinerant-electron ferromagnet and a large scatter in the values
of the critical exponents have rendered the results of previous investigations inconclusive.

This situation prompted us to undertake a detailed systematic experimental study of the
effect of site disorder on the magnetic properties in the critical region near the ferromagnetic–
paramagnetic phase transition in a well known weak itinerant-electron ferromagnet, Ni3Al.
The rationale behind the choice of this system for the type of study intended is the following.
Ni75Al25 undergoes (atomic) order–disorder phase transition at �1450 ◦C and hence the degree
of site disorder in this alloy system can be altered in a controlled fashion through an appropriate
choice and sequence of heat treatments. The ordered Ni3Al compound thus forms a well
characterized (reference) system [8] for a study which intends to clearly bring out the influence
of the site disorder on the critical behaviour.

2. Sample preparation and characterization

2.1. Preparation

Ultra-high-purity (99.999%) nickel and aluminium taken in stoichiometric proportions by
weight were melted together in a recrystallized alumina crucible under high-purity (99.999%)
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argon gas inert atmosphere by a radio frequency (RF) induction technique. The Ni75Al25 alloy,
in a completely molten state, was kept in the crucible for a couple of minutes for homogenization
and then poured into a cylindrical hole in a massive copper mould. The entire operation
from melting to pouring was carried out under argon pressure of >1 atm. Polycrystalline
Ni75Al25 was thus prepared in the form of a rod, 10 mm in diameter and 100 mm in length.
Spheres of 3 mm diameter, rectangular parallelopipeds of dimensions 40 × 2.5 × 0.5 mm3

and discs of 10 mm diameter and 5 mm thickness were spark-cut from the rod. One each of
the spheres, rectangular parallelopipeds and discs was annealed at 520 ◦C for 16 d in quartz
tubes evacuated to a pressure of 10−7 Torr and subsequently water-quenched. A portion of
the ‘as-prepared’ polycrystalline rod was melt-quenched (ejected at a temperature of 1500 ◦C
and helium pressure of 200 mbar) on to a rotating copper wheel to form long thin ribbons of
width 2 mm and thickness ∼30 µm. Yet another Ni75Al25 ingot prepared by the RF induction
method was re-molten and an attempt was made to grow a single crystal by the Bridgman
technique. However, this attempt was not successful in that a highly strained polycrystalline
sample of cylindrical shape was formed. A sphere of 2.5 mm diameter and a disc of 10 mm
diameter and 5 mm thickness was spark-cut from this cylindrical sample. The samples in the
‘highly strained’, ‘annealed’ and ‘quenched’ states are henceforth referred to as S1, S2 and S3,
respectively.

2.2. Characterization

With a view to confirming that the samples indeed conform to the stoichiometric composition
Ni75Al25, the pieces remaining after spark-cutting samples S1, S2 and S3 were analysed for
chemical composition using the x-ray fluorescence technique and inductively coupled plasma-
optical emission spectroscopy. The actual chemical composition of these samples is given in
table 1. Extensive x-ray diffraction measurements, using Cu Kα radiation, have been performed
on disc-shaped samples at room temperature over the angle, 2θ , range of 10◦ � 2θ � 100◦.
The observed x-ray patterns, shown in figure 1, could be completely indexed on the basis of
the L12 cubic structure and the refined values of the lattice parameter, displayed in table 1,
have been obtained employing the well known Nelson–Riley–Taylor–Sinclair method [23].
Drastically reduced peak intensity and considerably large widths of the Bragg peaks in sample
S1 are the manifestation of a high level of internal strain and compositional inhomogeneity.
In the case of the quenched sample S3, satellite (s) peaks of lower intensity accompany the
main (m) Bragg peaks of higher intensity and occur at higher Bragg angles, θB , (figure 1).
Moreover, the satellite peaks are uniformly (systematically) shifted with respect to the main
peaks, i.e. θs

B − θm
B ≡ φ = 0.29(1)◦. The splitting of the main as well as satellite (220) peaks

into Kα1 and Kα2 components is also clearly noticed from the x-ray pattern shown in figure 1.
The occurrence of satellite peaks signals the existence of two interpenetrating face-centred-
cubic (fcc) lattices of different interplanar spacings dm and ds corresponding to the main and
satellite reflections. The interplanar spacings dm and ds are related through the expression
(1/ds) = (1/dm) + φ

√
(2/λ)2 − (1/dm)2 or, alternatively, by ds = dm/(1 + φ cot θm

B ), where
λ is the wavelength of the incident x-ray radiation. The interatomic spacings for the two
interpenetrating fcc lattices that give rise to main and satellite reflections, respectively, turn
out to be am = 3.5650(10) Å and as = 3.5619(5) Å. Another important finding is that the
quenched sample S3 has a strong (200) texture. By contrast, the annealed sample S2 exhibits
no such texture, sharper Bragg peaks (figure 1) and thus a much higher degree of site order, as
expected.

From the observed integrated intensities IS and IF of the Cu3Au-type (100) or (110)
superstructure (S) and the fcc type (200) or (220) fundamental (F ) Bragg reflection peaks
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Figure 1. X-ray diffraction patterns for the Ni3Al samples S1, S2 and S3 in the angle range (2θ )
20◦–80◦. The enlarged view of (210) and (211) peaks for S2 (encircled region) is also shown in
the figure.

Table 1. Nominal and actual composition, lattice parameter (a) and LRO parameter.

Nominal composition Actual composition

Ni Al Ni Al a LRO parameter
Sample (at.%) (at.%) (at.%) (at.%) (Å) (S)

S1 75.00 25.00 74.73(13) 25.20(19) 3.5686(14) 0.77(4)
S2 75.00 25.00 75.08(17) 25.21(10) 3.5650(15) 0.95(2)
S3 75.00 25.00 75.08(17) 25.21(10) 3.5650(10)a 0.76(4)

3.5619(5)a

a Values corresponding to two sub-lattices.

in a given sample, the long-range order (LRO) parameter, S, has been estimated using the
relation [24] S2 = (IS/IF )sample(IF /IS)S=1, where (IF /IS)S=1 is the corresponding intensity
ratio for the fully ordered Ni3Al sample. In the absence of the experimental value of the ratio
(IF /IS)S=1, this ratio is calculated from the expression
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(IF /IS)S=1 = [{XNifNi(θ) + XAlfAl(θ)}2
F {LP (θ)}F {exp(−2M(θ))F }]

[{fNi(θ) − fAl(θ)}2
S{LP (θ)}S{exp(−2M(θ))S}]

, (1)

where XNi and XAl are the concentrations of Ni and Al atoms in atomic percent, fNi

and fAl are the atomic structure factors for Ni and Al, the Lorentz polarization factor
LP = (1 + cos2 2θ)/ sin2 θ cos θ , 2θ is the Bragg angle, exp(−2M) is the Debye–Waller
factor with M(θ) = (3h2/makB�D){(φ(x)/x) + (1/4)}(sin2 θ/λ2), the Debye integral
φ(x) = (1/x)

∫ x

0 ξ dξ/(eξ − 1), the Debye temperature = �D , x = �D/T and the mass of
the atom = ma . In equation (1), the subscripts F and S refer, respectively, to the fundamental
and superstructure reflections. The values of fNi, fAl, LP and exp(−2M) corresponding
to the angles at which (100), (200) or (110), (220) Bragg reflections occur [25] in the
fully ordered Ni3Al compound are taken from the standard international tables [26, 27] and
inserted into equation (1) to obtain the theoretical estimates for the ratio [I (200)

F /I
(100)
S ]S=1

or [I (220)
F /I

(110)
S ]S=1. The LRO parameter is then calculated from the reflections S2 =

[I (100)
S /I

(200)
F ]meas × [I (200)

F /IS
(100)]S=1 and/or S2 = [I (110)

S /I
(220)
F ]meas × [I (220)

F /I
(110)
S ]S=1,

where the subscript meas denotes the measured integrated intensity ratio for a given sample.
The values of S, so obtained, are listed in table 1. The present value of the lattice parameter
for the fully ordered Ni3Al sample, S2, conforms well with those reported [25,28] previously.
Note that the value S = 0.55(30) for sample S2 quoted in [8,29] is wrong because instead of the
integrated intensity ratio, the peak intensity ratio [25] was used for (IF /IS)S=1 to calculate S.

In the ordered Ni3Al intermetallic compound, Ni and Al atoms respectively occupy face
centres (A sites) and corners (B sites) of the fcc unit cell. In a partially ordered Ni75Al25 alloy,
if the right (Ni on A, Al on B) and wrong (Ni on B, Al on A) atoms are denoted by r and w, the
total number of atoms on the A or B sites is given by n = r + w. The LRO parameter, defined
by S = (r − w)/n = (2r/n) − 1, is equal to unity for the completely ordered case when
r = n. According to this definition, the observed values of S (table 1) indicate that 88.5 ± 2.0
(11.5 ± 2.0), 97.5 ± 1.0 (2.5 ± 1.0) and 88 ± 2 (12 ± 2)% of A or B sites are occupied by Ni
(Al) or Al (Ni) atoms in samples S1, S2 and S3, respectively.

3. Experimental details

High-resolution (50 ppm) magnetization, M(T, Hext ), measurements were performed on well
characterized polycrystalline samples S1–S3 of nominal composition Ni75Al25 in external static
magnetic fields (Hext ) up to 15 kOe over a wide temperature range, 15 K � T � 300 K,
embracing the critical region near the ferromagnetic–paramagnetic phase transition. While
samples S1 and S2 were spheres of diameters 2.5 and 3 mm, respectively, sample S3 was in
the form of a stacked bundle consisting of several alloy ribbon strips, each of 2.2 mm length
and 2 mm width, stacked one above the other after a thin coat of Apeizon N grease had
been applied in between them to ensure a good thermal contact between the ribbon strips. In
order to minimize the demagnetizing effects, sample S3 was rotated (after placing it in the
sample holder assembly) such that Hext lies within the ribbon plane and is directed along
the length of the ribbons. Such an operation was not needed in the case of samples S1

and S2, where the demagnetizing factor does not depend on the direction of Hext . Sample
temperature was monitored by a pre-calibrated platinum sensor which is in body contact
(hence in good thermal contact) with the sample, and kept constant to within ±5 mK by a
proportional integrator and derivative temperature controller. The demagnetizing factor, N ,
was computed from the inverse slope of the magnetization (M) versus Hext straight-line (i.e.
4πN = (slope)−1 = Hext/M) isotherm taken at the lowest temperature T = 15 K in the field
range −20 Oe � Hext � 20 Oe. A rough estimate of the Curie temperature, TC , was obtained
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Figure 2. Temperature variations of ac susceptibility, χac (closed symbols), measured at the rms
driving ac field of magnitude 100 mOe and frequency 187 Hz, and dc susceptibility, χdc (open
symbols), measured in an external dc field of 5 Oe; both χac(T ) and χdc(T ) are normalized to
their maximum values. The straight lines drawn through the data points illustrate the ‘kink-point’
determination of TC as the temperature at which these straight lines intersect one another.

by identifying TC with the temperature at which a ‘knee’ occurs in the thermomagnetic curve
taken at Hext = 5 Oe in the field-cooled mode. Such curves for samples S1–S3 are depicted in
figure 2. Magnetization versus external magnetic field isotherms were taken on all the three
samples at 60 predetermined but fixed values (each stable to within ±1 Oe) ranging from 0 to
15 kOe at temperature intervals of 0.5, 0.1, 0.05 and 0.025 K in the ranges 15 K � T � 0.5TC ,
0.5TC � T � TC − 10 K, TC − 10 K � T � TC − 3 K and TC − 3 K � T � TC + 3 K,
respectively. Above TC + 3 K, the temperature interval was slowly increased to 0.1, 0.5, 1, 5
and 10 K until room temperature was reached.

After compensating for the earth’s magnetic field, the ‘in-phase’ component of ac
susceptibility (χac) was measured to a relative accuracy of ∼10 ppm on several rectangular
strips each of dimensions 40 × 2.5 × 0.5 (0.03) mm3 of samples S1, S2 (S3) at various fixed
rms amplitudes (1 mOe � Hac � 100 mOe) and frequencies (18.7 Hz � ν � 187 Hz)
of the ac driving field Hac (applied along the length in the sample plane) in the temperature
interval 10 K � T � 120 K. Considerations such as the optimum signal-to-noise ratio and
linear response to Hac at a given temperature restrict the choice of Hac and ν to 10 mOe
and 87 Hz, respectively. The demagnetizing factor N was extracted from the relation
χ−1(T ) = χ−1

ac (T ) − 4πN using N as a parameter such that at T = TC , χ−1
ac (TC) = 4πN as

χ−1(TC) = 0. The values of N so determined (N = 0.006 and 0.0004 for samples S2 and S3)
and those deduced from the low-field magnetization versus Hext isotherms agree quite well
with those calculated from the well known Osborn formula using the actual sample dimensions.
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Figure 2 compares the dc susceptibility (measured at Hext ≡ Hdc = 5 Oe), normalized
to its maximum value, [χdc(T )/χmax

dc ]Hext=5 Oe, plotted against the reduced temperature,
T/TC , for samples S2 and S3 with the corresponding normalized ac susceptibility (taken
at Hac = 100 mOe and ν = 187 Hz), χac(T )/χmax

ac , versus T/TC plots. This figure
also displays the [χdc(T )/χmax

dc ]Hext=5 Oe versus T/TC plot for sample S1. Note that the
values of TC for samples S1–S3, determined by an elaborate critical-point analysis (to be
described later), have been used to construct these plots. Based on the well known relation
(1/Mmeas) = (1/Mint ) + [1/(Hext/4πN)] between the measured magnetization (Mmeas) and
internal or ‘zero-field’ magnetization (Mint ) for a ferromagnet at low fields, two cases need to
be distinguished.

Case 1. When Hext � 4πN , Mmeas � Hext/4πN or χmeas = Mmeas/Hext =
(4πN)−1; i.e. at such low fields, the measured susceptibility is demagnetization-limited
for temperatures below TC .
Case 2. When Hext � 4πN , Mmeas(T ) � Mint (T ); i.e., the measured magnetization
essentially follows the temperature dependence of spontaneous magnetization for T � TC .

χdc(T ) or equivalently, Mmeas(T ) at Hext = 5 Oe for sample S3 (χac(T ) for samples S2 and
S3, and χdc(T ) for samples S1 and S2) corresponds (correspond) to case 2 (case 1). Other
important observations include the following:

(i) with increasing field, the temperature, TK (at which the ‘knee’ in χ(T ) occurs) shifts to
lower temperatures and χ(T ) is more sensitive to field in the quenched sample S3 than in
the annealed sample S2, and

(ii) χdc(T ) exhibits more than one plateau for T < TC in sample S1, indicating thereby that
the sample is chemically inhomogeneous and contains magnetic phases of different Curie
temperatures.

The latter inference is consistent with that drawn from the x-ray data shown in figure 1.

4. Results and discussion

After correcting the external magnetic field for demagnetization (i.e. H = Hext − 4πNM(T ,

Hext )), the raw M − Hext isotherms taken in the critical region are used to construct
the [M(T, H)]1/β versus [H/M(T , H)]1/γ plots, better known as the modified Arrott
plots (MAPs), with the choice of the critical exponents β and γ for spontaneous magneti-
zation and initial susceptibility (β = 0.5 and γ = 1.0 in the present case, figure 3) that makes
the MAP isotherms for temperatures close to TC linear [6, 7, 13, 16] over the widest possible
H/M range. The origin of the pronounced concave downward (upward) curvature (figure 3) in
the MAP isotherms at low fields for T � TC (T � TC), inherent to ferromagnetic systems, has
been discussed at length in [13]. Moreover, the MF values of the exponents β and γ (indicating
that the critical fluctuations of the order parameter are not as important as they normally are for
d = 3 spin systems) as well as a very low value of magnetization even at 4.2 K in the present
case ensure that the MF magnetic equation of state is valid over unusually wide ranges of T

and H . The ‘zero-field’ quantities such as spontaneous magnetization, M(T, 0), and inverse
initial susceptibility, χ−1(T ) ≡ χ−1

dc (T ), are computed from the intercept values at different
temperatures on the ordinate (T � TC) and abscissa (T � TC) obtained when the linear
high-field portions of the [M(T, H)]2 versus [H/M(T , H)] (Arrott plot (AP)) isotherms are
extrapolated to H = 0 and M2 = 0, respectively, as illustrated by the typical APs shown in
figure 3. For sample S1 the AP isotherms develop a slight concave upward curvature as the
temperature is raised through the Curie temperature. Such a departure from linearity basically
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reflects the presence of more than one magnetic phase in this sample; ferromagnetic phase with
higher (lower) TC constitutes the majority (minority) phase. APs yield Curie temperature as
the temperature at which the M2–(H/M) isotherm is linear over nearly the entire H/M range
(down to the lowest value of H/M for samples S2 and S3, and for (H/M) > 240 for S1) and
upon extrapolation passes through the origin. With TC , M(T, 0) and χ−1(T ) determined in
this way from the AP, spontaneous magnetization and inverse initial susceptibility are plotted
against reduced temperature, ε = (T − TC)/TC , in figures 4 and 5 over a wide temperature
range that includes the critical region. The relation χ(T ) = χac(T )/[1 − 4πNχac(T )] asserts
that χac(T ) is a direct measure of the ‘zero-field’ intrinsic susceptibility, χ(T ). Henceforth,
χ(T ) data obtained through extrapolation and those measured directly at Hac = 10 mOe and
ν = 87 Hz are referred to as χdc(T ) and χac(T ), respectively.

With a view to ascertaining the true asymptotic critical behaviour of the weak itinerant
ferromagnets in question and to bringing out clearly the role of site disorder, the M(T, 0), χ(T )

and M(TC, H) data are analysed employing a method whose details are given elsewhere [8]
and which makes use of the expressions that exhaust all the possibilities from the theoretical
standpoint [1, 29–31] by either including or excluding the leading multiplicative logarithmic
correction (MLC) or additive logarithmic correction (ALC), non-analytic correction (NAC) to
the single power laws (SPLs).

Using the expressions

M(T, 0) = Beff (−ε)βeff ε < 0 (2)

χ−1(T ) = �−1
eff εγeff ε > 0 (3)

the effective critical exponents βeff and γeff , defined as βeff (ε) = d[ln M(|ε|)]/d(ln |ε|)
and γeff (ε) = d[ln χ−1(ε)]/d(ln ε), are calculated at different temperatures from the M(ε)
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and χ−1(ε) data depicted in figures 4 and 5. βeff (ε) and γeff (ε), so obtained, are also
displayed in these figures. In the plots of βeff versus ε (figure 4) and γeff versus ε (figure 5),
εLC→G
CO marks the temperature (indicated by arrows) at which a crossover from the asymptotic

to non-asymptotic critical behaviour occurs. Thus the asymptotic critical region spans the
temperature ranges for M(T, 0) and χdc(T ) displayed in table 2. An elaborate ‘range-of-fit’
analysis [3–8,32] of the M(T, 0), χ−1(T ) and M(TC, H) data (taken in the asymptotic critical
region) reveals the following. (I) Neither the SPL, equations (2) and (3), nor the expressions
involving either the ALC or the NAC but only those

M(T, 0) = B(−ε)β | ln |ε||x−
ε < 0 (4)

and

χ−1(T ) = �−1εγ | ln |ε||−x+
ε > 0 (5)

that include the leading MLC reproduce the observed temperature variations of M(T, 0)

(figure 6) and χ−1
ac (T ) or χ−1

dc (T ) (figure 7) accurately. (II) By contrast, the MLC fit (depicted
in figure 8 by the continuous curve) to the critical isotherm, M(TC, H), based on the expression

H = DMδ| ln |M||−δx0
ε = 0, (6)

is marginally better than the SPL fit based on

H = Deff Mδeff ε = 0 (7)

or even the ALC and NAC fits. (III) When the lower bound |εmin|(Mmin) of the fit range is
kept constant and the upper bound |εmax |(Mmax) is varied in the ‘range-of-fit’ analysis, the
parameters corresponding to the SPL/ALC/NAC fits vary monotonously while those associated
with the MLC fits remain essentially unaltered (within the uncertainty limits) as |εmax |(Mmax)

increases. Note that the parameter variations with |εmax |(Mmax) are the same for the SPL,
ALC and NAC fits. Figures 7–9 in [8] serve to illustrate the above-mentioned parameter
variations.

Observation (I) is vindicated by the robustness of the fitting parameters against variation
in the range of fit and by the result that the percentage deviation of the M(T, 0) and χ−1

ac (T ),
χ−1

dc (T ) data from the best least-squares fits based on equations (4) and (5) is smaller in
magnitude and evenly distributed around the theoretically calculated values, whereas the
optimum SPL/ALC/NAC fits present systematic deviations from the data, so much so that
such deviations blow up as ε → 0. By comparison, the percentage deviation of the M(TC, H)

data from the optimum fits based on equations (6) and (7) does not permit a clear-cut distinction
between the MLC and SPL fits to be made. However, a slightly lower (by nearly 8%) value
of the sum of deviation squares and substantially lower deviations at low fields in the case
of the MLC fit does tilt the balance in its favour. Figures 4–6 in [8] represent the typical
deviation plots. The optimum MLC fits to the M(T, 0), χ−1

ac (T ), χ−1
dc (T ) and M(TC, H) data

are depicted by the continuous curves in figures 6–8. Based on the variations of the fitting
parameters in the asymptotic critical region yielded by the ‘range-of-fit’ analysis [3–8, 32],
we arrive at the final values for the quantities of interest listed in table 2. Note that all
the independent determinations of the Curie temperature for a given sample (table 2) from
the M(T, 0), χ−1

ac (T ), χ−1
dc (T ) and M(TC, H) data yield the same value within the uncertainty

limits, i.e. T −
C = T 0

C = T +
C , as is demanded by the consistency between different data sets

taken on the same sample. Moreover, χac (direct method) and χdc (indirect method involving
extrapolation to zero field) yield identical values (table 2) for the universal quantities such as
the asymptotic critical exponents and MLC exponents. Figures 7–9 in [8] serve to illustrate
this behaviour.
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Figure 6. Spontaneous magnetization, M(T, 0), as a function of reduced temperature. The
continuous curves through the M(T, 0) data (open symbols) are the optimum MLC fits based
on equation (4).

While MF values of the asymptotic critical exponents β, γ and δ rule out the possibility
of an isotropic Heisenberg or isotropic dipolar critical behaviour in Ni3Al, the logarithmic
corrections to MF power laws seem to suggest that Ni3Al may belong to one of those
universality classes for which the RG theories predict such corrections. These classes are

(a) systems with [33] spin dimensionality ‘n’ and space dimensionality d = 4,
(b) uniaxial dipolar ferromagnets [31] with d = 3 and n = 1,
(c) isotropic d-dimensional ferromagnets with n-component spins and attractive interactions

between spins decaying with interspin distance, r , as [1] J (r) ∼ 1/r(3/2)d and
(d) the same as (c) but with [34] n → ∞ (spherical model).

Obviously, the universality classes (a) and (d) are not applicable to the three-dimensional
ferromagnets in question. Logarithmic corrections to the MF power laws have previously
been observed in a number of uniaxial dipolar ferromagnets (for details refer to the references
cited in Frey et al [31] and [32]). In table 2, the experimental values of the critical exponents, the
exponents x−, x+ and x0 of the logarithmic correction terms, defined by the equations (4)–(6),
as well as the universal amplitude ratio Rχ = DBδ−1�, are compared with the corresponding
theoretical estimates [1,31] predicted for the universality classes (b) and (c). Such a comparison
between theory and experiment reveals that the values of x−, x+, x0 and Rχ determined in
this work are completely different from those predicted by theory for a d = 3 uniaxial dipolar
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the optimum MLC fits based on equation (5).

ferromagnet. By contrast, the RG calculations for a d = 3, n = 3 isotropic ferromagnet
in which the interaction between spins decays as J (r) ∼ 1/r(3/2)d yield the estimates for
the exponents x− and x+ that are in very good agreement with the experimental values.
However, such an agreement should be treated with caution since no theoretical estimates
for the quantities x0 and Rχ are currently available. Another important point to note is that
the critical exponents, universal amplitude ratio and exponents of the leading logarithmic
correction have the same values (within the uncertainty limits) for all three samples S1–S3

(table 2). This observation asserts that site disorder has no influence on the asymptotic critical
behaviour of the weak itinerant-electron ferromagnet, Ni75Al25.

The ‘range-of-fit’ analysis of M(T, 0) and χ−1
dc (T ) data taken at temperatures outside

the asymptotic critical region, based on equations (2)–(5), reveals the following magnetic
behaviour in this temperature region. The optimum fits (continuous curves) to the
[M(T, 0)]1/βeff versus (−ε) and [χ−1(T )]1/γeff versus ε data, based on the expressions

M(T, 0) = B ′(−ε)β[1 + aM(−ε)�M ] ε < 0 (8)

χ−1(T ) = �′−1
εγ [1 + aχ ε�χ ]−1 ε > 0 (9)

(which include the corrections to MF leading exponents arising from Gaussian fluctuations)
with �M = �χ fixed at 1.0, as expected for the Gaussian (G) fixed point and the values for
the parameters B ′, β and aM in equation (8) and �′−1, γ and aχ in equation (9) displayed in
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Figure 8. H versus M isotherms at T = TC for different samples. The continuous curves through
the H(M) data are the optimum MLC fits based on equation (6).

table 3, describe the data better than the pure MF power laws (dashed lines), i.e. equations (2)
and (3) with βeff = 0.5 and γeff = 1.0, in the temperature ranges specified in table 3, as is
evident from figure 9. In order to highlight this observation, βeff and γeff are plotted against
the reduced temperature εG = (T − T G

C )/T G
C (referred to the Curie temperature T G

C of the
Gaussian (G) fixed point) for temperatures on either side of T G

C in figure 10. The straight line
fits through the βeff (εG) and γeff (εG) data points are based on the expressions

βeff (εG) = βG + aM�M(−εG)�M (10)

and

γeff (εG) = γ G + aχ�χ(εG)�χ (11)

that relate the effective (βeff , γeff ) and asymptotic (βG, γ G) critical exponents, defined
by equations (2), (3) and (8), (9), respectively, for the Gaussian fixed point. Note that
βG = limεG→0 βeff (εG) (γ G = limεG→0 γeff (εG)) and if �M = �χ = 1, βeff versus εG

and γeff versus εG plots are straight lines with slopes (intercepts on βeff and γeff axes) aM

and aχ (βG and γ G), respectively. That this is indeed the case in specific temperature ranges
below and above T G

C is demonstrated by the data presented in figure 10. The values of βG,
aM , γ G and aχ deduced from the linear βeff (εG) and γeff (εG) plots serve as a cross-check for
those (table 3) obtained from the optimum fits (continuous curves in figure 9) to the M(T, 0)

and χ−1(T ) data, based on equations (8) and (9). Another important point to note is that if
the Gaussian corrections were not important, βeff and γeff would remain constant at the MF
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Table 2. Comparison between experiment and theory.

Theory

Experiment d = 3, n = 3 d = 3, n = 1
J (r) ∼ r−(3/2)d Uniaxial dipolar

Parameters Method S1 S2 S3 [1] [31]

Fit range 0.070–210 0.18–133 0.056–127
ε(10−4)

T −
C (K) M(T, 0)/LC 56.240(5) 56.377(5) 36.002(5) — —

Beff M(T , 0)/SPL 44(3) 47(3) 38(2) — —
βeff M(T , 0)/SPL 0.46(1) 0.48(2) 0.46(1) — —
B M(T , 0)/MLC 35.62(2) 34.9(2) 28.83(6) — —
β M(T , 0)/MLC 0.500 0 0.501(1) 0.5000(3) 0.5 0.5
x− M(T, 0)/MLC 0.272 7(2) 0.2745(25) 0.2727(5) 3/11 1/3

Fit range χdc 1.4–177 0.7–433 1.39–160
ε(10−4) χac 0.89–327 2.35–191
T +

C (K) χdc/MLC 56.240(5) 56.371(5) 36.002(5) — —
χac/MLC 56.380(5) 36.002(5) — —

�−1
eff χdc/SPL 3843(447) 2315(212) 777(170) — —

χac/SPL 262(17) 381(24) — —

γeff χdc/SPL 1.065(13) 1.075(20) 1.065(3) — —
χac/SPL 1.092(12) 1.072(9) — —

�−1 χdc/MLC 5997(5) 3300(20) 1210(20) — —
χac/MLC 345(1) 556.35(48) — —

γ χdc/MLC 1.000 0(2) 0.9992(15) 0.9993(8) 1.0 1.0
χac/MLC 0.9995(5) 1.0000(4) 1.0 1.0

x+ χdc/MLC 0.454 5(2) 0.4545(55) 0.4545(58) 5/11 1/3
χac/MLC 0.4546(5) 0.4545(20)

Fit range 17.34–34.75 3.2–28.2 10.74–23.09
M (G)
T 0

C (K) M(TC, H)/MLC 56.240(5) 56.376(5) 36.002(5) — —
Deff M(TC, H)/SPL 1.203 5(8) 0.654(4) 0.3550(17) — —
δeff M(TC, H)/SPL 2.999 9(1) 2.9985(35) 2.993(10) — —
D M(TC, H)/MLC 1.217 1(4) 0.651(4) 0.3585(20) — —
δ M(TC, H)/MLC 3.000 0(1) 3.004(4) 3.0000(15) 3.0 3.0
x0 M(TC, H)/MLC 0.003 33 0.0033(3) 0.0036(4) — 1/3

Rχ 0.26(1) 0.25(1) 0.24(1) — 0.5

β + γ 1.499 97 1.501(2) 1.4993 1.5 1.5
βδ 1.500(1) 1.505(5) 1.4999(3) 1.5 1.5

values β = 0.5 and γ = 1.0 within the temperature ranges in question. Finite slopes of the
βeff (εG) and γeff (εG) linear plots (figure 10), therefore, assert that the Gaussian corrections
are significant. Furthermore, it is evident from the βeff (ε) and γeff (ε) data shown in figures 4
and 5, as well as from the βeff (εG), γeff (εG) plots (figure 10) that a crossover from the
asymptotic critical behaviour, characterized by MLC to MF power laws, to the Gaussian (G)
fixed point occurs gradually over a fairly wide temperature range; εMLC→G

CO (εG→MLC
CO ) and

εG→MF
CO mark the onset temperatures for the MLC → G (G → MLC) and G → MF crossovers

with respect to T MLC
C ≡ TC (T G

C ) and T G
C , respectively.
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Figure 9. In order to highlight the importance of the corrections to the MF behaviour arising
from Gaussian fluctuations, the quantities [M(T, 0)]1/βeff and [χ−1(T )]1/γeff with the MF choice
(βeff = 0.5 and γeff = 1.0) of the exponents βeff and γeff are plotted against temperature. The
best least-squares MF and Gaussian fits to the data, based on equations (2), (3) and (8), (9) of the text,
are depicted by the dashed straight lines and solid curves, respectively. If the Gaussian corrections
are not important, such plots should be linear (dashed straight lines) over the temperature intervals
marked by the upward or downward arrows below and above the Gaussian Curie temperature, T G

C .
For the sake of clarity, the origin (which should actually read as zero) of the ordinate scales for
samples S1 (open triangles) and S2 (open squares) has been shifted up.

Table 3. Values of various parameters in the Gaussian and MF regimes. Numbers in the parentheses
denote uncertainty in the least significant figure.

Gaussian ε range
T G

C Curie–Weiss
Sample M(T, 0) χ−1(T ) βG γG (K) aM aχ range (in ε) qC qS qC/qS

S1 −0.55 to −0.29 0.16–0.58 0.495 1.002 57.04 0.025 0.085 1.20–2.77 0.375 0.0616 6.17
(5) (3) (4) (5) (5) (3)

S2 −0.44 to −0.34 0.18–0.58 0.500 0.995 59.8 −0.075 0.025 1.31–3.52 0.358 0.0575 6.23
(9) (5) (2) (5) (2) (2)

S3 −0.45 to −0.32 0.17–0.37 0.497 1.005 36.43 −0.19 0.011 — — 0.0428 —
(3) (5) (3) (3) (5)

Taking cognizance of the fact that the symmetry of the Hamiltonian and/or range of
interaction govern the asymptotic critical behaviour of metallic ferromagnets, an attempt is
made to rationalize the present observation that the asymptotic critical behaviour of Ni75A25

is characterized by MF power laws with logarithmic corrections. To this end, the following
observations merit serious consideration. A detailed investigation [35] of magnetocrystalline
anisotropy on ordered Ni3Al single crystals has revealed that the leading anisotropy constant
vanishes as the Curie temperature is approached from below. In view of this finding, Ni3Al is
expected to behave as an isotropic spin system in the asymptotic critical region. Considering
that the ratio of the spin-wave stiffness, D, to the Curie temperature, TC , is a direct measure of
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the range of interaction in the localized-electron model, the value (D/TC) � 1.25 meV Å2 K−1

reported [29, 36, 37] previously for Ni75Al25 regardless of the degree of site disorder present,
when compared with the estimate (D/TC) = 0.144 meV Å2 K−1 predicted [38] by the nearest-
neighbour Heisenberg model, asserts that the interactions coupling the magnetic moments
in Ni75Al25 are of long-range type. The χ−1(T ) data for samples S1 and S2, displayed in
figure 11, follow the Curie–Weiss behaviour in the temperature ranges specified in table 3.
By contrast, magnetic susceptibility of the quenched sample (S3) does not obey the Curie–
Weiss law even up to temperatures as high as 6TC , as is evident from figure 11. Persistence of
the deviations from the Curie–Weiss behaviour and the curvature in the M versus H isotherms
up to T � 6TC indicates the presence of short-range magnetic order in this sample even
at such high temperatures. It is only for temperatures in the vicinity of room temperature
(300 K) that the Curie–Weiss behaviour is observed in S3. The inverse slope of the straight-
line fit, based on the Curie–Weiss law, yields the Curie constant, C, which, in turn, permits an
accurate determination of the effective atomic moment in the paramagnetic state, qC , through
the relation qC(qC + 2) = (2.828)2CA/ρ, where A and ρ are the atomic weight and density,
respectively. The values of qC , so obtained, and the previously reported [29, 37] numerical
estimates for the magnetic moment per alloy atom at 0 K, qS , for the currently investigated
samples are listed in table 3. The qC/qS ratio, which is also displayed in table 3, turns out
to be very large compared with the value (qC/qS) = 1.0, which is the case when magnetic
moments are localized at the lattice sites. According to the Rhodes–Wohlfarth criterion [39],
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the larger the value of the qC/qS ratio compared with unity, the more itinerant are the magnetic
moments. Therefore, it follows that

(i) the localized moment picture cannot form a correct theoretical description of the
magnetism in Ni75Al25 and

(ii) the long-range interactions such as the dipole–dipole and the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interactions are not relevant to the case under consideration.

Even otherwise, the dipole–dipole interactions, which are proportional to the magnetic moment
squared, are expected to be extremely weak in Ni75Al25 due to the small magnitude of qS (an
order of magnitude smaller than in crystalline Ni).

Observation of logarithmic corrections to the MF power laws and a close agreement
between the values x− = 0.2745(25) and x+ = 0.4545(55) and those (x− = 3/11 and
x+ = 5/11) characterizing the asymptotic critical behaviour of an isotropic d = 3, n = 3
ferromagnet in which interactions between spins decay [1] with the interspin distance (r) as
J (r) ∼ 1/r(3/2)d (table 2), when viewed in the light of the above remarks, rule out completely
the possibilities such as (a) isotropic short-range Heisenberg, (b) isotropic long-range dipolar
and (iii) uniaxial dipolar for the asymptotic critical behaviour of Ni75Al25. They do, however,
indicate that the weak itinerant ferromagnet Ni75Al25 may be a potential candidate for the
universality class for critical-point phenomena represented by the marginal case d = 3, n = 3
and σ = d/2 of the RG calculations [1] on an isotropic ferromagnet with space dimensionality
d, spin dimensionality n and long-range attractive interactions between spins of the form
J (r) ∼ 1/rd+σ . A cautious approach in interpreting the above-mentioned agreement between
theory and experiment is warranted by the fact that the theoretical estimates for the universal
amplitude ratio Rχ = DBδ−1� and the logarithmic correction exponent x0 are not currently
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available. However, based on the present work, the following definite conclusions can be
drawn.

(i) The site disorder is irrelevant in the RG sense.
(ii) A series of crossovers, MF with logarithmic corrections → Gaussian → pure MF, occurs

as the temperature increasingly deviates on either side of TC .

Detailed RG calculations are needed to unravel the physics behind the above observations.
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Kellner W U, Fähnle M, Kronmüller H and Kaul S N 1987 Phys. Status Solidi b 144 397
[15] Hargraves P and Dunlap R A 1988 J. Phys. F: Met. Phys. 18 533
[16] Kaul S N and Mohan Ch V 1994 Phys. Rev. B 50 6157
[17] Kouvel J S and Comly J B 1971 Critical Phenomena in Alloys, Magnets and Superconductors ed R E Mills,

E Ascher and R I Jaffee (New York: McGraw-Hill) p 437
[18] Jesser R, Bieber A and Kuentzler R 1983 J. Physique 44 631
[19] Shen Y, Nakai I, Maruyama H and Yamada O 1985 J. Phys. Soc. Japan 54 3915
[20] Seeger M and Kronmüller H 1989 J. Magn. Magn. Mater. 78 393
[21] Boxberg O and Westerholt K 1994 Phys. Rev. B 50 9331
[22] Seeger M, Kronmüller H and Blythe H J 1995 J. Magn. Magn. Mater. 139 312
[23] Nelson J B and Riley D P 1945 Proc. Phys. Soc. 57 160

Taylor A and Sinclair H 1945 Proc. Phys. Soc. 57 126
[24] Warren B E 1978 X-Ray Diffraction (London: Addison-Wesley)
[25] Grant W 1957 J. Met. 9 865
[26] 1959 International Tables for X-Ray Crystallography vol 2 (Birmingham: Kynoch)

1962 International Tables for X-Ray Crystallography vol 3 (Birmingham: Kynoch)
[27] 1967 Metals Reference Book 4th edn, vol 1 (New York: Plenum)
[28] Aoki K and Izumi O 1975 Phys. Status Solidi 32 657 and references therein
[29] Semwal Anita and Kaul S N 1999 Phys. Rev. B 60 12 799
[30] Aharony A and Fisher M E 1973 Phys. Rev. B 8 3323

Bruce A D and Aharony A 1974 Phys. Rev. B 10 2078
Bruce A D 1977 J. Phys. C: Solid State Phys. 10 419
Frey E and Schwabl F 1991 Phys. Rev. B 43 833



Effect of site disorder on the asymptotic critical behaviour of Ni75Al25 5847

[31] Larkin A I and Khmel’nitskii 1969 Sov. Phys.–JETP 29 1123
Aharony A 1973 Phys. Rev. B 8 3363
Bre’zin E and Zinn-Justin J 1976 Phys. Rev. B 42 8261
Frey E and Schwabl F 1990 Phys. Rev. B 42 8261
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